Switch To Mobile View

Bulk Barcode Generator - POSTNet

http://barcode.design

Recommand:  Desktop Barcode Software With More Features:     Download Now

1. Enter barcode data in Excel for print bulk labels. 3. Generate sequence numbers for make barcodes.
2. Design barcode label with text, logo. 4. Print barcode label sheet to Avery 5160, 5161, 5162 . . .
5. Print barcode label on command line. 6. Add Ascii key to barcode: Tab, Enter, File Separator. etc.
 

Barcode Data: 

(Up to 100 rows, Desktop version no limits)

Tips:   You can edit data in Excel

or Word, then copy & paste

to this text box.

Or Make Sequence No. Barcodes.

Add Tab Key to Barcode

Use Excel Data to Print Bulk Barcode Labels - Desktop Freeware

Barcode Type:

ISBN Barcode With Price, QR Code bulk Generator

  Choose Another Barcode Type >>

Barcode Size:

Auto Resize to Fit Label Paper

  /     [ Width / Height ]     

Show Text on Bottom:

Add Multiple Line Texts to Barcode

Yes       No

Stretch:

Vertical Print Barcode and Text

Yes       No

Font Name / Size:

Export Barcodes to Word Excel for Further Editing

 /   

 

Right click each barcode to save to local.

Desktop version software can export bulk barcode images to a folder

 

Barcode Technology - POSTNet Barcode               Hide the description

The PostNet (Postal Numeric Encoding Technique) is a code by the US Post Office. It encodes the zip of the

addressee in a machine readable format. This improves the speed of sorting and delivering the mail..

The PostNet barcode is used mainly in 3 variants, that differ in the length of the data:

5 digits POSTNET barcode:  5 digit long zip code
ZIP + 4 POSTNET barcodes:  9 digit long zip code
DPBC POSTNET barcode (Delivery Point barcode):  9 digit long zip code + 2 DPBC digits.

Valid characters: 0123456789

POSTNet is one of the many barcode formats currently in use.

A Barcode is a method of representing data in a visual, machine-readable form.

The barcode formats has two categories:

One-dimensional (1D) --- Barcodes represented data by varying the widths and spacings of parallel lines.

Two-dimensional (2D) --- Using rectangles, dots, hexagons and other geometric patterns to represented data.

POSTNet is 1D barcode.

The PostNet barcode is constructed as follows:
Start character
Data
Check digit
Stop character.

POSTNet is variable with no fixed length.

Check digit:

The check digit is calculated as follows: First add all digits. The difference of this sum to the next multiple of 10 is the check digit. The check digit of the PostNet barcode is not displayed in the plain text line.

The check digit is chosen so that the sum of all digits in the bar code is a multiple of 10. Equivalently, the modulo-10 sum is 0.
To calculate the check digit:
Add up the digits. For example, if a letter is sent to Young America, Minnesota, it might be sent to 55555-1237, which would have the sum of 38.
Find the remainder of this number when it is divided by 10, in this case 8. This is also known as the sum modulo 10. A simple way to combine the two steps is to sum the digits without a tens column at all, but discard all carries.
Subtract the sum modulo 10 from 10. Continuing with the example, 10 − 8 = 2. The check digit is therefore 2.
If calculated correctly, the sum of the ZIP, ZIP+4, or ZIP+4+delivery point digits and the check digit will always be a multiple of 10. Continuing with the example above, (5+5+5+5+5+1+2+3+7+2) = 40, and 40 mod 10 = 0.
Note that the Delivery Point is often added after the ZIP+4 and before the check digit, in which case the computation of the check digit includes the ZIP+4 and the Delivery Point.

Human Readable:

Most barcodes display their corresponding values below them, which makes it possible to human read and manually  enter the barcode values into the equivalent system when the barcode label is worn out and cannot be read by the barcode scanner.

The Advantages of using barcodes:

If you want to reduce costs and save time, using barcodes is a good choice. Whether you are a company or a non-commercial organization, to improve efficiency and reduce overhead, barcodes are a valuable and viable option, which is economical and reliable.

Using Barcode system eliminates the possibility of human error. The error rate of manually entering data is
significantly higher than that of scan barcodes. Barcode scanning is fast and reliable, and it takes much less time than manual data entry. Especially when using a QR code, hundreds of characters can be read and entered into your system instantly.

When barcodes are used in management information systems, they can promote better decision-making. Because data is obtained quickly and accurately, you can quickly obtain a full range of information for the entire company or organization, so it is possible to make more informed decisions. Better decisions can ultimately save time and money.

Barcodes are cheap and user-friendly, providing an indispensable tool for tracking data from pricing to inventory. The end result of a comprehensive bar code system is reduced overhead.

Most commonly used barcode types

EAN-13 code: Product barcode, universal, supports 0-9 digits, 13 digits in length, has grooved.

UPC-A code: Product barcode, mainly used in the United States and Canada, supports 0-9 numbers, 12 digits in length, has grooves.

Code-128 code: Universal barcode, supports numbers, letters and symbols, variable length, no grooves.

QR-Code: Two-dimensional barcode, supports multiple character sets and encoding formats, variable length, and has positioning marks.

Why are there many types of barcodes?

There are many types of barcodes because they have different uses and characteristics.

For example, a UPC [Universal Product Code] is a barcode used to label retail products and can be found on nearly every item sold and in grocery stores in the United States.

CODE 39 is a barcode that can encode numbers, letters and some special characters. It is commonly used in manufacturing, military and medical fields.

ITF [Interleaved Two-Five Code] is a barcode that can only encode an even number of digits. It is commonly used in the logistics and transportation fields.

NW-7 [also known as CODABAR] is a barcode that can encode numbers and four start/end characters. It is commonly used in libraries, express delivery and banks.

Code-128 is a barcode that can encode all 128 ASCII characters. It is commonly used in areas such as package tracking, e-commerce and warehouse management.

What is the historical origin of barcodes?

In 1966, the National Association of Food Chains (NAFC) adopted bar codes as product identification standards.

In 1970, IBM developed the Universal Product Code (UPC), which is still widely used today.

In 1974, the first product with a UPC barcode: a pack of Wrigley's gum was scanned in an Ohio supermarket.

In 1981, the International Organization for Standardization (ISO) approved Code39 as the first alphanumeric barcode standard.

In 1994, Japan's Denso Wave Company invented QR-Code, a two-dimensional barcode that can store more information.

Barcode application examples

Barcode Apps for Food Tracking: Apps that record the nutritional content, calories, protein and other information of the food you eat by scanning the barcode on the food label. These apps can help you record your eating habits, Manage your health goals, or understand where your food comes from.

Transportation and logistics: Used for ordering and distribution codes, product warehousing management, logistics control systems, ticket sequence numbers in international aviation systems. Barcodes are used in ordering and distribution in the logistics and transportation industry. They can be used to string Line Shipping Container Codes (SSCCs) are encoded to identify and track containers and pallets in the supply chain. They can also encode other information such as best before dates and lot numbers.

Internal supply chain: internal management of the enterprise, production process, logistics control system, ordering and distribution codes. Barcodes can store various information, such as item number, batch, quantity, weight, date, etc. This information can Used for tracking, sorting, inventory, quality control, etc., to improve the efficiency and accuracy of the company's internal supply chain management.

Logistics tracking: Barcodes are widely used in logistics tracking. It can be used to identify goods, orders, prices, inventory and other information. By affixing barcodes on packaging or shipping boxes, it is possible to achieve warehouse entry and exit. Automatic identification and recording of distribution, inventory and other logistics information to improve the accuracy and efficiency of logistics management.

Production line process: Barcodes can be used for factory production line process management to improve production efficiency and quality. Barcodes can identify product numbers, batches, specifications, quantities, dates and other information to facilitate traceability during the production process. Inspection, statistics and other operations. Barcodes can also be integrated with other systems, such as ERP, MES, WMS, etc., to achieve automatic collection and transmission of data.

Some common barcode application areas

Ticket Verification: Cinemas, event venues, travel tickets and more use barcode scanners to verify tickets and the admission process.

Food Tracking: Some apps allow you to track the food you eat via barcodes.

Inventory Management: In retail stores and other places where inventory needs to be tracked, barcodes help record the quantity and location of items.

Convenient checkout: In supermarkets, shops and restaurants, barcodes can quickly calculate the price and total of goods.

Games: Some games use barcodes as interactive or creative elements, such as scanning different barcodes to generate characters or items.

Benefits of using barcodes

Speed: Barcodes can scan items in a store or track inventory in a warehouse faster, thus greatly improving the productivity of store and warehouse personnel. Barcode systems can ship and receive goods faster to reasonably way to store and locate items.

Accuracy: Barcodes reduce human error when entering or recording information, with an error rate of approximately 1 in 3 million, and enable real-time information access and automated data collection anytime, anywhere.

Cost Effectiveness: Barcodes are cheap to produce and print, and can save money by increasing efficiency and reducing losses. Barcoding systems allow organizations to accurately record the quantity of product left, its location and when reorders are needed, which This avoids waste and reduces the amount of money tied up in excess inventory, thereby improving cost efficiency.

Inventory Control: Barcodes help organizations track the quantity, location and status of goods throughout their life cycle, improve the efficiency of moving goods in and out of warehouses, and make ordering decisions based on more accurate inventory information.

Easy to use: Reduce employee training time because using the barcode system is easy and less error-prone. You only need to scan the barcode label attached to an item to access its database through the barcode system and obtain information related to the item. information.

Application of barcodes in inventory management

Goods Receipt: By scanning the barcode on received goods, the quantity, type and quality of goods can be quickly and accurately recorded and matched with purchase orders.

Shipping: By scanning the barcode on outgoing goods, the quantity, destination and status of the goods can be quickly and accurately recorded and matched with sales orders.

Moving warehouse: By scanning the barcodes on the goods and warehouse locations, the movement and storage of goods can be quickly and accurately recorded, and inventory information updated.

Inventory: By scanning the barcodes on goods in the warehouse, you can quickly and accurately check the actual quantity of goods and the system quantity, and find and resolve discrepancies.

Equipment Management: By scanning the barcode on the equipment or tool, you can quickly and accurately record the use, repair and return of the equipment or tool, and prevent loss or damage.

About QR-Code

QR-Code was invented in 1994 by a team led by Masahiro Harada of the Japanese company Denso Wave, based on the barcode originally used to mark automobile parts. It is a two-dimensional matrix barcode that can achieve multiple uses.

QR-Code has the following advantages compared with one-dimensional barcodes:

QR-Code can store more information because it uses a two-dimensional square matrix instead of one-dimensional lines. One-dimensional barcodes can usually only store dozens of characters, while QR-Code can Stores thousands of characters.

QR-Code can represent more data types, such as numbers, letters, binary, Chinese characters, etc. One-dimensional barcodes can usually only represent numbers or letters.

QR-Code can be scanned and recognized faster because it has four positioning marks and can be scanned from any angle. One-dimensional barcodes usually need to be scanned from a specific direction.

QR-Code is more resistant to damage and interference because it has error correction capabilities that can recover partially lost or obscured data. One-dimensional barcodes generally do not have such capabilities.

The difference between two-dimensional barcodes and one-dimensional barcodes mainly lies in the encoding method and information capacity. Two-dimensional barcodes use a two-dimensional square matrix, which can store more information and represent more data types. One-dimensional barcodes use one-dimensional lines, can only store a small amount of information, and can only represent numbers or letters. There are other differences between two-dimensional barcodes and one-dimensional barcodes, such as scanning speed, error correction capabilities, compatibility, etc.

QR-Code is not the only two-dimensional barcode. According to the principle, two-dimensional barcodes can be divided into two categories: matrix and stacked. Common two-dimensional barcode types are: Data Matrix, MaxiCode, Aztec, QR -Code, PDF417, Vericode, Ultracode, Code 49, Code 16K, etc., they have different applications in different fields.

The two-dimensional barcode developed on the basis of the one-dimensional barcode has advantages that the one-dimensional barcode cannot compare with. As a portable data file, although it is still in its infancy, it is in the ever-improving market. Driven by the economy and rapidly developing information technology, coupled with the unique characteristics of 2D barcodes, the demand for the new technology of 2D barcodes in various countries is increasing day by day.

About EAN-13 barcode

EAN-13 is the abbreviation of European Article Number, a barcode protocol and standard used in supermarkets and other retail industries.

EAN-13 is established based on the UPC-A standard established by the United States. The EAN-13 barcode has one more country/region code than the UPC-A barcode in order to meet the needs of international applications. . The UPC-A barcode is a barcode symbol used to track goods in stores. It is only used in the United States and Canada. It was developed by the United States [Uniform Code Council] in 1973 and has been used since 1974. It It was the earliest barcode system used for product settlement in supermarkets.

EAN-13 consists of a prefix code, manufacturer identification code, product item code and check code, a total of 13 digits. Its encoding follows the principle of uniqueness and can ensure that it is not repeated worldwide.

EAN International, referred to as EAN, is a non-profit international organization founded in 1977 and headquartered in Brussels, Belgium. Its purpose is to formulate and improve globally unified commodities The barcode system provides value-added services to optimize enterprise supply chain management. Its member organizations are located around the world.

EAN-13 barcodes are mainly used in supermarkets and other retail industries.

What is the difference between EAN-13 barcode and UPC-A barcode?

The EAN-13 barcode has one more country/region code than the UPC-A barcode. In fact, the UPC-A barcode can be regarded as a special case of the EAN-13 barcode, which is the EAN-13 barcode with the first digit set to 0.

The EAN-13 barcode is developed by the International Article Numbering Center and is universally accepted. The code length is 13 digits, and the first two digits represent the country or region code.

UPC-A barcode is produced by the United States Uniform Code Committee and is mainly used in the United States and Canada. The code length is 12 digits, and the first digit indicates the numeric system code.

EAN-13 barcode and UPC-A barcode have the same structure and verification method, and similar appearance.

EAN-13 barcode is a superset of UPC-A barcode and can be compatible with UPC-A barcode.

If I have a UPC code, do I still need to apply for an EAN?

No need. Both UPC and EAN can identify goods. Although the former originated in the United States, it is part of the global GS1 system, so if you register UPC under the GS1 organization, it can be used globally. If you need to print a 13-digit EAN barcode, you can add the number 0 in front of the UPC code.

UPC-A barcodes can be converted to EAN-13 barcodes by prepending 0. For example, the UPC-A barcode [012345678905] corresponds to the EAN-13 barcode [0012345678905]. Doing this ensures Compatibility with UPC-A barcodes.

 

 

 http://barcode.design/ - For Online

 http://Free-Barcode.com/ - For PC

EasierSoft Ltd.    Technology Support:  cs@easiersoft.com