Switch To PC View

Bulk Barcode Generator - Code-128

 
 

Barcode Data: 

( Up To 100 Rows )

You can first enter data

in Excel, then copy &

paste to this text box.

Barcode Type:

   Change Type >>

Barcode Size:

 /    [Width / Height]    

Unit of Size:

Show Text:

Yes       No

Stretch:

Yes       No

Font Name:

Font Size:

 

 
 
 
 

https://barcode.design

Recommand

Desktop Free Barcode Software With More Features

https://free-barcode.com/

 

1. Enter data in Excel for print bulk barcode labels.
2. Design complex label with barcodes, text, logo.
3. Generate sequence number for make barcodes.
4. Print barcode label sheet to Avery 5160, 5161, etc.
5. Print barcode label by command line.
6. Add Ascii key to barcode: Tab, Enter, etc.

 
 
 

About QR-Code

QR-Code was invented in 1994 by a team led by Masahiro Harada of the Japanese company Denso Wave, based on the barcode originally used to mark automobile parts. It is a two-dimensional matrix barcode that can achieve multiple uses.

QR-Code has the following advantages compared with one-dimensional barcodes:

QR-Code can store more information because it uses a two-dimensional square matrix instead of one-dimensional lines. One-dimensional barcodes can usually only store dozens of characters, while QR-Code can Stores thousands of characters.

QR-Code can represent more data types, such as numbers, letters, binary, Chinese characters, etc. One-dimensional barcodes can usually only represent numbers or letters.

QR-Code can be scanned and recognized faster because it has four positioning marks and can be scanned from any angle. One-dimensional barcodes usually need to be scanned from a specific direction.

QR-Code is more resistant to damage and interference because it has error correction capabilities that can recover partially lost or obscured data. One-dimensional barcodes generally do not have such capabilities.

The difference between two-dimensional barcodes and one-dimensional barcodes mainly lies in the encoding method and information capacity. Two-dimensional barcodes use a two-dimensional square matrix, which can store more information and represent more data types. One-dimensional barcodes use one-dimensional lines, can only store a small amount of information, and can only represent numbers or letters. There are other differences between two-dimensional barcodes and one-dimensional barcodes, such as scanning speed, error correction capabilities, compatibility, etc.

QR-Code is not the only two-dimensional barcode. According to the principle, two-dimensional barcodes can be divided into two categories: matrix and stacked. Common two-dimensional barcode types are: Data Matrix, MaxiCode, Aztec, QR -Code, PDF417, Vericode, Ultracode, Code 49, Code 16K, etc., they have different applications in different fields.

The two-dimensional barcode developed on the basis of the one-dimensional barcode has advantages that the one-dimensional barcode cannot compare with. As a portable data file, although it is still in its infancy, it is in the ever-improving market. Driven by the economy and rapidly developing information technology, coupled with the unique characteristics of 2D barcodes, the demand for the new technology of 2D barcodes in various countries is increasing day by day.

About EAN-13 barcode

EAN-13 is the abbreviation of European Article Number, a barcode protocol and standard used in supermarkets and other retail industries.

EAN-13 is established based on the UPC-A standard established by the United States. The EAN-13 barcode has one more country/region code than the UPC-A barcode in order to meet the needs of international applications. . The UPC-A barcode is a barcode symbol used to track goods in stores. It is only used in the United States and Canada. It was developed by the United States [Uniform Code Council] in 1973 and has been used since 1974. It It was the earliest barcode system used for product settlement in supermarkets.

EAN-13 consists of a prefix code, manufacturer identification code, product item code and check code, a total of 13 digits. Its encoding follows the principle of uniqueness and can ensure that it is not repeated worldwide.

EAN International, referred to as EAN, is a non-profit international organization founded in 1977 and headquartered in Brussels, Belgium. Its purpose is to formulate and improve globally unified commodities The barcode system provides value-added services to optimize enterprise supply chain management. Its member organizations are located around the world.

EAN-13 barcodes are mainly used in supermarkets and other retail industries.

What is the difference between EAN-13 barcode and UPC-A barcode?

The EAN-13 barcode has one more country/region code than the UPC-A barcode. In fact, the UPC-A barcode can be regarded as a special case of the EAN-13 barcode, which is the EAN-13 barcode with the first digit set to 0.

The EAN-13 barcode is developed by the International Article Numbering Center and is universally accepted. The code length is 13 digits, and the first two digits represent the country or region code.

UPC-A barcode is produced by the United States Uniform Code Committee and is mainly used in the United States and Canada. The code length is 12 digits, and the first digit indicates the numeric system code.

EAN-13 barcode and UPC-A barcode have the same structure and verification method, and similar appearance.

EAN-13 barcode is a superset of UPC-A barcode and can be compatible with UPC-A barcode.

If I have a UPC code, do I still need to apply for an EAN?

No need. Both UPC and EAN can identify goods. Although the former originated in the United States, it is part of the global GS1 system, so if you register UPC under the GS1 organization, it can be used globally. If you need to print a 13-digit EAN barcode, you can add the number 0 in front of the UPC code.

UPC-A barcodes can be converted to EAN-13 barcodes by prepending 0. For example, the UPC-A barcode [012345678905] corresponds to the EAN-13 barcode [0012345678905]. Doing this ensures Compatibility with UPC-A barcodes.

The future development of barcodes

Increase the capacity and information density of barcodes, enabling them to store more data, such as images, sounds, videos, etc.

The capacity and information density of barcodes refer to the amount of data that a barcode can store and the amount of data per unit area. Different types of barcodes have different capacities and information densities. Generally speaking, the capacity of two-dimensional barcodes and information density is higher than one-dimensional barcodes.

Currently, there are already some new barcode technologies, such as color barcodes, invisible barcodes, three-dimensional barcodes, etc. They all try to increase the capacity and information density of barcodes, but they also face some technical and application challenges. Therefore, there is still room and possibility to improve the capacity and information density of barcodes, but it also requires continuous innovation and optimization.

Enhance the security and anti-counterfeiting of barcodes, using encryption, digital signatures, watermarks and other technologies to prevent barcodes from being forged or tampered with. Specifically, there are several ways:

Encryption: Encrypt the data in the barcode so that it can only be decrypted by authorized equipment or personnel to prevent data leakage or malicious modification.

Digital signature: Add a digital signature to the barcode to verify the source and integrity of the barcode and prevent the barcode from being forged or tampered with.

Watermark: A watermark is embedded in the barcode to identify the owner or user of the barcode and prevent the barcode from being stolen or copied.

These technologies can improve the security and anti-counterfeiting of barcodes, but they will also increase the complexity and cost of barcodes, so they need to be selected and designed according to different application scenarios and needs.

 
 
 

COPYRIGHT (C) EasierSoft Ltd. 2005-2023

Technology Support:  cs@easiersoft.com