Switch To PC View |
Bulk Barcode Generator - MSI Plessey
|
|
|
|
|
|
|
|
https://barcode.design |
Recommand
Desktop Free
Barcode Software With More Features
https://free-barcode.com/ |
|
1. Enter data in Excel for print bulk barcode labels.
2. Design complex label with barcodes, text, logo.
3. Generate sequence number for make barcodes.
4. Print barcode label sheet to Avery 5160, 5161, etc.
5. Print barcode label by command line.
6. Add Ascii key to barcode: Tab, Enter, etc. |
|
|
|
About QR-Code | QR-Code was invented in 1994 by a team led by Masahiro Harada of the Japanese company Denso Wave, based on the barcode originally used to mark automobile parts. It is a two-dimensional matrix barcode that can achieve multiple uses. QR-Code has the following advantages compared with one-dimensional barcodes: QR-Code can store more information because it uses a two-dimensional square matrix instead of one-dimensional lines. One-dimensional barcodes can usually only store dozens of characters, while QR-Code can Stores thousands of characters. QR-Code can represent more data types, such as numbers, letters, binary, Chinese characters, etc. One-dimensional barcodes can usually only represent numbers or letters. QR-Code can be scanned and recognized faster because it has four positioning marks and can be scanned from any angle. One-dimensional barcodes usually need to be scanned from a specific direction. QR-Code is more resistant to damage and interference because it has error correction capabilities that can recover partially lost or obscured data. One-dimensional barcodes generally do not have such capabilities. The difference between two-dimensional barcodes and one-dimensional barcodes mainly lies in the encoding method and information capacity. Two-dimensional barcodes use a two-dimensional square matrix, which can store more information and represent more data types. One-dimensional barcodes use one-dimensional lines, can only store a small amount of information, and can only represent numbers or letters. There are other differences between two-dimensional barcodes and one-dimensional barcodes, such as scanning speed, error correction capabilities, compatibility, etc. QR-Code is not the only two-dimensional barcode. According to the principle, two-dimensional barcodes can be divided into two categories: matrix and stacked. Common two-dimensional barcode types are: Data Matrix, MaxiCode, Aztec, QR -Code, PDF417, Vericode, Ultracode, Code 49, Code 16K, etc., they have different applications in different fields. The two-dimensional barcode developed on the basis of the one-dimensional barcode has advantages that the one-dimensional barcode cannot compare with. As a portable data file, although it is still in its infancy, it is in the ever-improving market. Driven by the economy and rapidly developing information technology, coupled with the unique characteristics of 2D barcodes, the demand for the new technology of 2D barcodes in various countries is increasing day by day. | What is the difference between EAN-13 barcode and UPC-A barcode? | The EAN-13 barcode has one more country/region code than the UPC-A barcode. In fact, the UPC-A barcode can be regarded as a special case of the EAN-13 barcode, which is the EAN-13 barcode with the first digit set to 0. The EAN-13 barcode is developed by the International Article Numbering Center and is universally accepted. The code length is 13 digits, and the first two digits represent the country or region code. UPC-A barcode is produced by the United States Uniform Code Committee and is mainly used in the United States and Canada. The code length is 12 digits, and the first digit indicates the numeric system code. EAN-13 barcode and UPC-A barcode have the same structure and verification method, and similar appearance. EAN-13 barcode is a superset of UPC-A barcode and can be compatible with UPC-A barcode. If I have a UPC code, do I still need to apply for an EAN? No need. Both UPC and EAN can identify goods. Although the former originated in the United States, it is part of the global GS1 system, so if you register UPC under the GS1 organization, it can be used globally. If you need to print a 13-digit EAN barcode, you can add the number 0 in front of the UPC code. UPC-A barcodes can be converted to EAN-13 barcodes by prepending 0. For example, the UPC-A barcode [012345678905] corresponds to the EAN-13 barcode [0012345678905]. Doing this ensures Compatibility with UPC-A barcodes. | About Code-128 barcode | Code-128 barcode was developed by COMPUTER IDENTICS in 1981. It is a variable-length, continuous alphanumeric barcode. Code-128 barcode consists of a blank area, a start mark, a data area, a check character and a terminator. It has three subsets, namely A, B and C, which can represent different character sets. It can also be used to achieve multi-level encoding through the selection of starting characters, code set characters, and conversion characters. It can encode all 128 ASCII characters, including numbers, letters, symbols and control characters, so it can represent all characters on the computer keyboard. It can achieve high-density and efficient data representation through multi-level encoding, and can be used for automatic identification in any management system. It is compatible with the EAN/UCC system and is used to represent the information of the storage and transportation unit or logistics unit of the commodity. In this case, it is called GS1-128. Code-128 barcode standard was developed by Computer Identics Corporation [USA] in 1981. It can represent all 128 ASCII code characters and is suitable for convenient application on computers. The purpose of formulating this standard is to Improve barcode encoding efficiency and reliability. Code128 is a high-density barcode. It uses three versions of character sets [A, B, C] and the selection of starting characters, code set characters, and conversion characters, according to different data Type and length, choose the most appropriate encoding method. This can reduce the length of the barcode and improve encoding efficiency. In addition, Code128 also uses check characters and terminators, which can increase the reliability of the barcode and prevent misreading or missed reading. Code-128 barcode is widely used in internal management of enterprises, production processes, and logistics control systems. It has many application scenarios, mainly in industries such as transportation, logistics, clothing, food, pharmaceuticals, and medical equipment. | Benefits of using barcodes | Speed: Barcodes can scan items in a store or track inventory in a warehouse faster, thus greatly improving the productivity of store and warehouse personnel. Barcode systems can ship and receive goods faster to reasonably way to store and locate items. Accuracy: Barcodes reduce human error when entering or recording information, with an error rate of approximately 1 in 3 million, and enable real-time information access and automated data collection anytime, anywhere. Cost Effectiveness: Barcodes are cheap to produce and print, and can save money by increasing efficiency and reducing losses. Barcoding systems allow organizations to accurately record the quantity of product left, its location and when reorders are needed, which This avoids waste and reduces the amount of money tied up in excess inventory, thereby improving cost efficiency. Inventory Control: Barcodes help organizations track the quantity, location and status of goods throughout their life cycle, improve the efficiency of moving goods in and out of warehouses, and make ordering decisions based on more accurate inventory information. Easy to use: Reduce employee training time because using the barcode system is easy and less error-prone. You only need to scan the barcode label attached to an item to access its database through the barcode system and obtain information related to the item. information. |
|
|
|
COPYRIGHT (C)
EasierSoft Ltd. 2005-2023
Technology
Support: cs@easiersoft.com |
|